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Resonance patterns observed in 2D PISEMA (polarization in-
version spin exchange at magic angle) spectra from a transmem-
braneα-helix have been demonstrated to yield structural details of
the protein. This paper presents a mathematical discussion of the
PISEMA powder spectrum as the image in the frequency plane of
a quadratic function from the sphere of unit vectors. The simplicity
of this function allows easy calculation of the powder spectrum.
Based on this analysis of powder patterns, four degeneracies are
discussed which arise in determining possible orientations associ-
ated with PISA spectra. This paper also gives parametric equations
for PISA wheels, which are specific patterns observed in PISEMA
spectra of oriented peptides. These wheels are useful both in assign-
ing the resonances and in determining the orientation of the helix
with respect to the magnetic field. The union of these PISA wheels
gives the entire powder spectrum. C© 2001 Academic Press

Key Words: PISEMA; solid-state NMR; powder pattern; PISA
wheel; membrane protein.
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1. INTRODUCTION

Resonance patterns observed in 2D solid-state NMR f
transmembraneα–helices andβ–sheets provide structural de
tails of the molecule (1–3). The PISEMA (polarization inver
sion spin exchange at magic angle) experiment (4) correlates
anisotropic dipolar and chemical shift interactions for labe
proteins. The patterns observed in PISEMA spectra for
ented, labeled proteins have been termedPolar Index Slant Angle
(PISA) wheels(1, 2). These wheels are useful both in assig
ing resonances and in determining the general orientatio
α-helices andβ-sheets with respect to the magnetic field. F
ther, PISEMA spectra of powder samples provide information
the general orientation of molecules that undergo axial rotat
without orienting the sample (5). Together with the high resolu
tion seen in PISEMA spectra, these capabilities make PISE
experiments into powerful tools for obtaining structural info
mation about membrane proteins, which are frequently diffi
to study using X-ray crystallography or solution NMR.

To examine the nature of PISEMA spectra, a general dis
sion of paired dipolar and chemical shift interactions can
1 To whom correspondence should be addressed. E-mail: dennyjk@mercer.
edu. ted
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done in terms of several parameters, including the principal
ues of the two tensors and the polar anglesα andβ expressing
the unique principal axis of the dipolar tensor in the princip
axis frame of the chemical shift tensor. Powder spectra for s
paired interactions have been discussed previously by Lin
et al. (6 ), and the general outlines of the spectrum were term
ridge plots. Most recently, Baket al.developed a program, calle
SIMPSON, for simulating solid-state NMR spectroscopy whi
can calculate PISEMA powder spectra directly from the Ham
tonian (7). Other recent discussions of PISEMA powder spec
include (5, 8–11).

In light of the usefulness of PISEMA powder patterns a
PISA wheels for obtaining structural information about tran
membrane peptides, this paper is a mathematical discussio
computed PISEMA spectra. First, powder spectra are given
the image in the frequency plane of a function from the u
sphere. The simplicity of this function allows calculation of th
ridge plots of PISEMA powder patterns without using Hamilt
nians giving results very close to those found in (6, 7). Then, a
complete analysis of the degeneracies in PISEMA data is
sented, including straightforward formulas for determining pe
tide plane orientations from PISEMA resonances and a met
for obtaining the sign of the dipolar interaction for PISEM
resonances in certain regions of spectra. These computa
can then be applied to data for the M2 transmembrane p
tide from influenza A and for gramicidin A. Finally, the mathe
matics of creating PISA wheels are discussed and applied
two-parameter model of an ideal helix to produce parame
equations for PISA wheels and the resonance patterns on
wheels. Using this approach as a model of the M2 transm
brane peptide, we give an example of a mathematical met
for fitting an ideal PISA wheel to actual data.

2. THEORY

A PISEMA experiment measures two tensors evaluated
unit directionEB0 for the magnetic field. This can be considere
experimental determination of the value of a function from t
unit sphere to the frequency plane. Here the case of a chem
shift tensorσ and a dipolar splitting tensorν is considered,
and the value of the function in the frequency plane is deno
7 1090-7807/01 $35.00
Copyright C© 2001 by Academic Press
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π (EB0)= (σ, ν), whereEB0 is a vector with|EB0| = 1. This function
will be called thePISEMA function.

The chemical shift tensorσ is an asymmetric tensor. Its prin
cipal axis frame is denoted

PAF = (Eσ11, Eσ22, Eσ33),

and the corresponding principal values are denotedσ11, σ22, and
σ33, with σ11 ≤ σ22 ≤ σ33. The value ofσ is given by

σ = σ11 (EB0 · Eσ11)
2+ σ22 (EB0 · Eσ22)

2+ σ33(EB0 · Eσ33)
2.

The dipolar tensorν is traceless and axially symmetric wit
unique rotation axisEu in the direction of a covalent bond. Ifν‖
is the value ofν whenEB0 = Eu, then

ν = ν‖
2

(3(EB0 · Eu)2− 1).

Because of the doublet splitting of the dipolar interaction, o
the absolute value ofν can be experimentally determined. In th
Results and Discussion section, methods of obtaining the
of ν from PISEMA spectra for resonances in particular regio
of some spectra will be described.

The polar angles giving the rotation axis of the dipolar te
sor in the principal axis frame of the chemical shift tensor
denotedα andβ, as in (6). Thus,α andβ describe the relative
orientation of the two tensors (see Fig. 1), and

Eu= cosα sinβ Eσ11+ sinα sinβ Eσ22+ cosβ Eσ33.

To write equations for the PISEMA functionπ , let (x, y, z)
be the coordinates ofEB0 in PAF. Then

σ = σ11 x2+ σ22 y2+ σ33 z2

ν = ν‖
2

(3(cosα sinβ x + sinα sinβ y+ cosβ z)2− 1),

[1]
FIG. 1. The polar angles,α andβ, give the orientation of the rotation axis
Eu, of the dipolar tensor in the principal axis frame of the chemical shift tens
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with x2 + y2 + z2 = 1. Given inPAF coordinates (x, y, z),
the functionπ (EB0) = (σ, ν) will be denotedπ (x, y, z). These
equations show thatσ andν are invariant under the inversion
sending (x, y, z) to (−x,−y,−z).

Whenα = 0◦, the equations in [1] become

σ = σ11x2+ σ22y2+ σ33z2

ν = ν‖
2

(3(sinβx + cosβz)2− 1).
[2]

These equations demonstrate that ifα= 0, thenσ and ν are
invariant under the reflection sending (x, y, z) to (x,−y, z) as
well as the rotation sending (x, y, z) to (−x, y,−z); thus,

π (x, y, z) = π (x,−y, z) = π (−x, y,−z) = π (−x,−y,−z).

[3]

3. MATERIALS AND METHODS

The calculations for this paper were performed on a Mac
tosh computer with a 333 MHz G3 processor and on a Gatew
computer with a 350 MHz Celeron processor. The computat
programMaple 6(Waterloo Maple, Inc.) was used for numeri
and symbolic computations.

PISEMA data for oriented samples of the M2 transmembra
peptide of influenza A are used in computations in the followin
sections. From Songet al. (12), the chemical shift (±3 ppm)
and dipolar splittings (±1 kHz) written as ordered pairs (σ, ν) at
several sites are: Val27 (135 ppm, 6.85 kHz), Val28 (106 ppm, 2.0
kHz), Ile32 (129 ppm, 2.2 kHz), Ile33 (168 pmm, 3.75 kHz), Ile35

(118 ppm, 5.3 kHz), Ile39 (124 ppm, 4.4 kHz), and Ile42 (127
ppm, 6.6 kHz). The average values of the chemical shift ten
elements for these sites are used in computations in the follow
sections. Based on data from Songet al. (12), these average
values areσ11= 31,σ22= 55, andσ33= 202 ppm. The15N–1H
dipolar coupling constant is taken to beν‖ = 10.735 kHz. Finally,
the polar angles of the rotation axis of the dipolar tensor in t
principal axis frame of the chemical shift tensor are taken to
α= 0◦ andβ = 17◦, as in (2, 12).

PISEMA powder pattern data from Maiet al. (13) for gram-
icidin A are also used in calculations below. For these da
σ11=−60, σ22=−37, andσ33= 98 ppm relative toσiso=
0 ppm. Also, the polar angles of the rotation axis of the dipo
tensor in the principal axis frame of the chemical shift tensor a
againα= 0◦ andβ = 17◦. As in (5), the15N–1H dipolar coupling
constant is taken to beν‖ = 11.335 kHz.

4. RESULTS AND DISCUSSION

4.1. Orientations and Powder Spectra
,
or.

If the coordinates (x, y, z) of EB0 are known inPAF, then the
orientationof PAF with respect to the magnetic field direction
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PISEMA POWDER PATT

is known; i.e., thePAF is known in the laboratory frame up to
rotation aboutEB0. As in (14), this orientation is reported usin
the Euler anglesφ andθ of thePAF in the laboratory frame so
that (x, y, z)= (cosφ sinθ, sinφ sinθ, cosθ ). A PISEMA pow-
der pattern is the image under the PISEMA function of all p
sible orientations ofPAF in the laboratory frame. Mathemat
cally, this is equivalent to saying that a PISEMA powder patt
is the image under the PISEMA function of all possible o
entations ofEB0 in thePAF. Thus, given a PISEMA resonanc
(σ, ν), the number of orientations ofEB0 in PAF with π (EB0) =
(σ, ν) is the number of orientations ofPAF consistent with a
solid-state NMR anisotropic observation of (σ, ν) for the given
resonance.

Considering just one transition of the doublet in the dipo
interaction, the ridge plot of the powder spectrum of a PISEM
experiment is boundary of the set of pointsπ (EB0) = (σ, ν) for all
EB0 on the unit sphere, i.e., the set of all points satisfying Eq.
for some (x, y, z) on the sphere. This ridge plot will be calle
thesinglet powder pattern. If the doublet is taken into accoun
the powder pattern is the singlet together with its reflect
in the lineν = 0.

The intensity of the singlet pattern at a given resonance (σ, ν)
is related to the number of orientations for which the PISEM
functionπ produces (σ, ν). Equation [1] shows that this numbe
is at most 8, since three quadratic equations, in general, ha
most 8 solutions. Ifα = 0◦, Eq. [3] shows that there are at leas
solutions if (σ, ν) is in the powder pattern. Since this number
orientations is greater than one, there are certaindegeneracies,
or ambiguities, that arise in finding orientations from PISEM
data. Understanding both the nature of these degeneracie
the process of how to eliminate them are important steps in
taining orientational information from PISEMA data; this pro
lem will be addressed in the next section.

Having discussed orientations, shapes of powder pattern
now considered. The powder pattern corresponding toα= 0◦

andβ = 0◦ is easiest to examine. Here the orientation of thePAF
with Eσ11 in the direction ofEB0 is mapped by the PISEMA func
tion to the pointR= (σ11,−ν‖/2) in the frequency plane. Sim
larly, the orientation withEσ22 in the direction ofEB0 is mapped to
Q = (σ22,−ν‖/2), and the orientation withEσ33 in the direction
of EB0 is mapped toP = (σ33,−ν‖/2). From Eq. [2] it is easy to
see that the circlex= 0 on the sphere maps onto the line joini
the pointsP andQ; the circley= 0 maps onto the line joining
P andR; and the circlez= 0 maps onto the line joiningQ and
R. The PISEMA functionπ maps the octantx > 0, y > 0,
z > 0 of the sphere one-to-one onto the interior of the trian
formed by the pointsP, Q, andR (see Fig. 2). Every point o
the interior of this triangle is covered 8 times byπ , because al
8 of the points (±x,±y,±z) are mapped onto the same po
(σ, ν).

Next, consider the caseα = 0 and 0< β < 90◦. In this case,

the circle y= 0 on the sphere maps to an ellipse rather th
a line. Unit vectors of interest on this circle areEσ33, Eσ22, Eσ11,

Eu⊥ = Eσ22× Eu, andEu; the PISEMA function maps these vecto
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FIG. 2. A singlet powder pattern withα = 0◦,β = 0◦,σ11 = 35 ppm,σ22 =
55 ppm, andσ33 = 210 ppm. Using the PISEMA functionπ , the orientation of
PAF with Eσ11 in the direction ofEB0 is mapped to the pointR. The orientation
with Eσ22 in the direction ofEB0 is mapped toQ, and the orientation withEσ33 in
the direction ofEB0 is mapped toP. Note that the PISEMA function covers each
point in the interior of the triangle 8 times.

to the points

P = (σ33, ν‖(3 cos2 β − 1)/2),

Q = (σ22,−ν‖/2),

R = (σ11, ν‖(3 sin2 β − 1)/2),

S= (σ33 sin2 β + σ11 cos2 β,−ν‖/2), and

T = (σ33 cos2 β + σ11 sin2 β, ν‖),

respectively (see Fig. 3).
To verify that the powder pattern shape in this case is

ellipse, substitutey= 0 in Eq. [2] and eliminate the variables
x andz. The result is an implicit equation for the ellipse in th
frequency plane with no units present, which can be plotted us
theMaplecommandimplicitplot . The ellipse equation is

(ν̃ − cos 2β σ̃ − sin2 β )2 = σ̃ (1− σ̃ ) sin 2β [4]

where

σ̃ = σ − σ11

σ33− σ11
[5]

ν̃ = 1

3

(
2ν

ν‖
+ 1

)
.

To complete the description of this powder pattern, note th

an

rs

great circles on the sphere containingEσ22 and−Eσ22 go to lines
that extend from the point

(
σ22,−ν‖/2

)
to points on the ellipse.

The singlet powder pattern for this case is shown in Fig. 3.
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FIG. 3. A singlet powder pattern withα = 0◦ andβ = 17◦. The left and
right boundary lines areσ = σ33 andσ = σ11, respectively, and the top an
bottom lines areν = ν‖ andν = − ν‖2 , respectively. The orientations of thePAF
with Eσ33, Eσ22, Eσ11, Eu⊥ = Eσ22× Eu, andEu parallel toEB0 map to the pointsP, Q,
R, S, andT , respectively. The PISEMA functionπ maps 4 points on the uni
sphere onto each point in the light gray region and 8 points on the unit sp
to each point in the dark gray region.

Finally, consider theα 6= 0 case. The general equation forν
in Eq. [1] depends on the square of the dot product

Eu · EB0 = (cosαx + sinαy) sinβ + cosβz. [6]

When|sinβ| is relatively small, the influence of the angleα on
the value of the dipolar splittingν is severely limited. Thus, fo
small |sinβ|, PISEMA powder patterns withα = ±15◦ are all
essentially the same shape as seen above forα = 0. When|sinβ|
is large, the powder pattern shape is greatly influenced by
value ofα, and a wide array of shapes arise as shown in (6, 11).
Such powder patterns can be produced using the PISEMA f
tionπ by plotting the images underπ of a large number of grea
circles on the sphere.

In membrane proteins, small values of|sinβ| are encoun-
tered in practice. For the M2 transmembrane peptide and
gramicidin A, the angleβ has been determined (13) to be 17◦,
which has been shown to be typical for15N chemical shift
tensors in nonglycine amides (15–17). The simulated ellipses
for the doublet powder pattern for gramicidin A are shown
Fig. 4 and are similar to the powder pattern found in (5). Using
Eq. [4], the foci of the ellipses can be found and used to co
pute the slopes of the major axes. These values are found
±0.254 kHz/ppm, which compare favorably to the experim
tally determined slopes of±0.270 kHz/ppm reported in (5).

The influence of the angleα is also very limited in residue
whose the unique axis,Eu, of the dipolar interaction is approx
mately parallel to±EB0. In this case,|z| is close to 1 and|x|, |y|
are close to 0 in Eq. [6]; hence, the value ofα has little effect
on PISEMA spectra of such residues. This situation arise

oriented samples of membrane proteins which have a small
with respect to the magnetic field direction, e.g., the membra
peptide AChR M2 (18).
ET AL.
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4.2. Degeneracies

The PISEMA functionπ maps orientations on the sphere t
the frequency plane. To obtain orientation information abou
peptide plane from a PISEMA spectrum, the PISEMA functio
must be inverted (i.e., find the orientation ofEB0 that produced
a particular resonance in the PISEMA spectrum). This involv
solving the equations in [1] for (x, y, z), with x2+ y2+ z2 = 1.
It has been shown in the above sections, using the powder s
trum, that this system of equations has several solutions giv
rise to degeneracies, or ambiguities, in the orientation of
principal axis frame. A further complication is that|ν| is the
observable, and the sign ofν is not known. Thus, orientation
information about peptide planes can only be determined if
degeneracies are resolved. The calculations below are done
theα= 0◦ case and then theα 6= 0 case. Subsequently, theα= 0◦

case is applied to data for the M2 transmembrane peptide fr
influenza A.

For theα = 0◦ case, suppose that a resonance in a PISEM
spectrum has chemical shiftσ and dipolar splitting|ν|. To de-
scribe the multiple solutions to the equations in [2] for (x, y, z)
with x2+y2+z2 = 1, a sequence of±1 values,ε j , j = 1, 2, 3, 4
is defined. The first,ε1, describes the sign degeneracy ofν,

ν = ε1|ν|. [7]

With this notation, finding the orientation of the chemical shi
principal axis frame with respect toEB0 requires solving the sys-
tem 

1= x2+ y2+ z2

ε1|ν| = ν‖
2

(3(sinβ x + cosβ z)2− 1)

σ = σ11 x2+ σ22 y2+ σ33 z2

[8]

for x, y, andz.

FIG. 4. A simulated doublet PISEMA powder pattern based on data f
gramicidin A. The slope of the major axes of the ellipses are computed to

tilt
ne
±0.254 kHz/ppm. The shape of the powder pattern and the slope of the major
axes of the ellipses compare favorably with the experimental spectrum found
in (5).
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The value ofε2 describes the sign degeneracy in solving t
second equation in Eq. [8],

sinβ x + cosβ z= ε2

√
1

3

(
2ε1|ν|
ν‖
+ 1

)
. [9]

To produce a system equivalent to Eq. [8], solve the above e
tion for z and substitute into the third equation in Eq. [8]. Ne
solve the first equation in Eq. [8] forz2 and substitute into the
third equation. This creates the equivalent system of equati

1= x2+ y2+ z2

σ = (σ11− σ33) x2+ (σ22− σ33) y2+ σ33

σ = (σ11+ σ33 tan2 β) x2+ σ22 y2

− 2ε2σ33 ν̂ x + σ33 cot2 β ν̂2,

[10]

where

ν̂ = tanβ secβ

√
1

3

(
2ε1|ν|
ν‖
+ 1

)
.

To find x, solve the second equation in Eq. [10] fory2 and
substitute into the third equation. This gives a quadratic equa
of the form

Ax2− 2ε2Bx+ C = 0,

where

A = σ11+ σ33 tan2 β + σ22(σ33− σ11)

σ22− σ33
,

B = σ33 tanβ secβ

√
1

3

(
2ε1|ν|
ν‖
+ 1

)
,

C = σ33 sec2 β

3

(
2ε1|ν|
ν‖
+ 1

)
− σ + σ22(σ − σ33)

σ22− σ33
.

This equation can be solved using the quadratic formula

x = ε2B+ ε3

√
B2− AC

A
, [11]

and this definesε3. The final degeneracy,ε4 is then encountered
when solving fory,

y = ε4

√
1− x2− z2. [12]

Thus, if the values ofε j , for j = 1, 2, 3, 4, can be determined

(or judiciously guessed based on other known structures),
PISEMA function can be inverted to give orientation informa
tion.
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The powder spectrum analysis in previous sections gives
formation on the degeneraciesε2, ε3, andε4. Since the values
of ε j are±1, there are a total of 23= 8 possibilities. The only
equation to restrict possibilities is Eq. [11], whose solution m
be in the interval from−1 to 1. If (σ, ν) is in the elliptical section
of the powder pattern (see Fig. 3), then the only two of the co
binations of (ε2, ε3) that give suitable solutions forx are those
for whichε2 andε3 have opposite sign; this is why there are on
four solutions for (x, y, z) for (σ, ν) in this portion of the powder
spectrum. Thus, Eqs. [9], [11], and [12] give a straightforwa
method for finding orientations (x, y, z) associated with a given
PISEMA resonance whenα = 0◦.

For the caseα 6= 0◦, finding the orientation of the chemica
shift principal axis frame with respect toEB0 requires solving the
system in Eq. [1] withx2+ y2+ z2 = 1. As in theα= 0◦ case,
z can be eliminated from the equations in Eq. [1] to obtain
system



1 = x2+ y2+ z2

σ = (σ11− σ33)x2+ (σ22− σ33)y2+ σ33

σ = (σ11+ σ33 cos2 α tan2 β) x2+ σ33 sin(2α) tan2 β xy

+ (σ22+ σ33 sin2 α tan2 β)y2− 2ε2σ33 cosα ν̂ x

+ 2ε2σ33 sinα ν̂ y+ σ33 cot2 β ν̂2,

[13]
where

ν̂ = tanβ secβ

√
1

3

(
2ε1|ν|
ν‖
+ 1

)
.

Geometrically, the last two equations in Eq. [13] above d
scribe ellipses in thexy plane. These equations can best
solved forx and y using numerical methods to find the inte
section of these ellipses. In this process, two sign degenera
are introduced so that there will be 0, 1, 2, or 4 solutions
(x, y), depending on the values ofσ11, σ22, σ33, ν‖, α, andβ.
Finally, having solved forx andy, the value ofz can be found
using the conditionx2 + y2 + z2 = 1, which introduces a fifth
sign degeneracy. Thus, forα 6= 0, there are 5 sign degeneracie
to produce a total of 0, 8, 16, or 32 orientations for each giv
PISEMA resonance.

There has been no discussion of the degeneracyε1 so far;
however, the powder spectrum does give some information
ε1. The dipolar splittingν lies in the interval from−ν‖/2 toν‖.
From this information alone, we know that if|ν|>ν‖/2 then
the sign ofν must be+1, but we have no information on th
sign of ν if |ν| ≤ ν‖/2. This means that 1D spectra give littl
information aboutε1.

For situations in whichα= 0◦ or |sinβ| is small, the 2D pow-
der pattern gives more information onε1. Figure 5A shows the

the
-
upper half of the doublet powder pattern divided into three dis-
joint regions A, B, and C. All of the resonances in region A must
haveε1=+1, since region A lies on one side of the symmetry
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FIG. 5. (A) The powder pattern for (σ, |ν|) gives added insight into the
degeneracyε1. If the resonance is in the section labeled A, then the sign oν

is ε1 = +1; if the resonance is in the section labeled C, then the sign ofν is
ε1 = −1. But, for resonances in the section labeled B, there is no informa
on the sign ofν. (B) The simulated powder pattern for the M2 transmembr
peptide from influenza A is plotted with the resonances for Val27, Val28, Ile32,
Ile33, Ile35, Ile39, and Ile42. These resonances are plotted as 6 ppm by 2
boxes to account for the experimental error reported in (12). The resonances fo
Val27, Ile32, Ile33, Ile35, Ile39, and Ile42 fall in region A of the powder; hence
ε1 = +1 for these residues.

line ν= 0 and contains resonances whose dipolar splittin
greater thanν‖/2. Region C also resides completely on one s
of the lineν= 0. Further, the dipolar splitting of the resonanc
in region C will have the opposite sign of those in region
so,ε1=−1 for resonances in region C. Finally, resonances
region B could have either+1 or−1 for ε1.

In Fig. 5B, PISEMA resonances for the M2 transmembra
peptide from influenza A are plotted along with the simula
ridge plot of the powder pattern. The resonances for Val27, Ile32,
Ile33, Ile35, Ile39, and Ile42 fall into region A of the powder pat
tern; hence theε1 degeneracy for each of these resonance
resolved withε1 = +1.

With only this information aboutε1, Table 1 demonstrates th
results of using Eqs. [9], [11], and [12] to compute orientatio
for peptide planes from PISEMA data for the M2 transmembr
peptide. Chemical shift tensor elements for individual sites
taken from (12), and the values in Table 1 are in agreement w
calculations in (12).

4.3. PISA Wheels

In theory, the structure of the protein backbone can be

termined, assuming standard peptide bond geometry, from
orientation of each peptide plane with respect to the magn
field direction (19, 20). The structure is determined only up t
ET AL.

f

ion
ne

Hz

is
de
es

;
in

ne
ed

is

ns
ne

are
ith

de-

certainchiral degeneracies due to the invariance ofπ with re-
spect to the reflection sending (x, y, z) to (x,−y, z).

Rather than determining all the structural parameters, ofte
better approach is to begin with a simpler two parameter mo
for each helical segment and then refine the model further. W
a PISEMA experiment is performed on anα-helix, a recogniz-
able pattern of resonances occurs. The orientation of the h
with respect to the magnetic field is then determined from t
pattern. The orientation of a regular, straightα-helix is described
in terms of two parameters: a tilt orslant angleτ and a rota-
tion angle orpolar indexρ0 which will be described below. The
termPolar Index Slant Angle (PISA) wheeldescribes a particu-
lar fourth order curve that fits a resonance pattern which occ
when the helix is tilted at an angleτ with respect to the magnetic

TABLE 1
Orientations Computed Using Data for M2

Transmembrane Peptide

Residue Degeneracies Orientation information

— ε1 ε2 ε3 ε4 x y z φ(◦) θ (◦)

Val27 1 −1 1 −1 −.46 −.44 −.77 −136.6 140.2
1 −1 1 1 −.46 .44 −.77 136.6 140.2
1 1 −1 −1 .46 −.44 .77 −43.5 39.7
1 1 −1 1 .46 .44 .77 43.5 39.7

Val25 1 −1 1 −1 −.32 −.73 −.61 −113.7 127.6
1 −1 1 1 −.32 .73 −.61 113.7 127.6
1 1 −1 −1 .32 −.73 .61 −66.2 52.4
1 1 −1 1 .32 .73 .61 66.2 52.4
−1 −1 1 −1 −.32 −.87 −.38 −110.2 112.4
−1 −1 1 1 −.32 .87 −.38 110.2 112.4
−1 1 −1 −1 .32 −.87 .38 −69.8 67.6
−1 1 −1 1 .32 .87 .38 69.8 67.6

Ile32 1 −1 1 −1 −.10 −.72 −.69 −97.8 133.4
1 −1 1 1 −.10 .72 −.69 97.8 133.4
1 1 −1 −1 .10 −.72 .69 −82.2 46.6
1 1 −1 1 .10 .72 .69 82.2 46.6

Ile33 1 −1 1 −1 .33 −.33 −.89 −44.9 152.5
1 −1 1 1 .33 .33 −.89 44.9 152.5
1 1 −1 −1 −.33 −.33 .89 −135.1 27.5
1 1 −1 1 −.33 .33 .89 135.1 27.5

Ile35 1 −1 1 −1 −.58 −.46 −.67 −141.5 132.4
1 −1 1 1 −.58 .46 −.67 141.5 132.4
1 1 −1 −1 .58 −.46 .67 −38.5 47.6
1 1 −1 1 .58 .46 .67 38.5 47.6

Ile39 1 −1 1 −1 −.32 −.62 −.72 −117.2 135.8
1 −1 1 1 −.32 .62 −.72 117.2 135.8
1 1 −1 −1 .32 −.62 .72 −62.8 44.2
1 1 −1 1 .32 .62 .72 62.8 44.2

Ile42 1 −1 1 −1 −.52 −.42 −.74 −140.9 138.0
1 −1 1 1 −.52 .42 −.74 140.9 138.0
1 1 −1 −1 .52 −.42 .74 −39.1 42.0
1 1 −1 1 .52 .42 .74 39.1 42.0

Note. Computation of orientations associated with PISEMA data for t
M2 transmembrane peptide from influenza A. Based solely on powder
tern analysis,ε1=+1 for each given residue, except Val28. To satisfy the

the

etic
o

system in Eq. [10],ε2 and ε3 must have opposite sign. The orientation of
EB0 in PAF is calculated using Eqs. [9], [11], and [12] and is reported as
(x, y, z) = (cosφ sinθ, sinφ sinθ, cosθ ).
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FIG. 6. The unit vectorsEr andEa are two of the vectors in the helix ax
frame,HAF = (Er, Ea×Er, Ea).

field (2). The tilt angle is determined by the shape and posi
of the wheel and the rotation angle by the pattern of assig
resonances on the wheel.

Using Eq. [2], the equations of the PISA wheels in the ca
α = 0 can be determined. The key is to know the orientation
PAF with respect to a helix axis frame,HAF . The third vector
in the helix axis frame is always the unit vectorEa in the direction
of the helix axis, pointing in the N- to C-terminus direction. T
first unit vector in this frame is the vector,Er, perpendicular to
the helix axis and pointing from the helix axis to theN-terminal
α-carbon in the peptide plane (see Fig. 6). Finally,

HAF = (Er, Ea×Er, Ea),

andHAF is a right handed, orthonormal frame.
Here, the peptide planes are numbered by the residue

taining the nitrogen in the plane, and so the vectorEr in the helix
axis frame corresponding to a particular nitrogen points to
α-carbon of thepreviousresidue. This scheme is important
keep in mind; otherwise, there can be some confusion abou
interpretation of the rotation parameter determining the orie
tion of the helix. Also, other choices of the vectorEr are possible,
such as the vector pointing from the helix axis to the nitrog
or the vector pointing from the helix axis to the midpoint of t
line joining theα-carbons.

For computing PISA wheels, the key is observing there
matrixA independent of the peptide plane such that

HAF = PAF A. [14]
The matrixA depends on the particularφ andψ parameters
of the regularα-helix as well as on the geometry of the peptid
plane. The value ofA for φ=−65◦ andψ =−40◦ with standard
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peptide plane geometry is computed in the appendix. To findA,
bothHAF andPAF are related to a molecular frameF for the
nitrogen in the peptide plane. The assumption is made that
principal axisEσ33 always lies in the peptide plane.

The orientation ofHAF with respect toEB0 can be described
by the polar coordinatesρ andτ of EB0 in the helix axis frame,
i.e.,

EB0 = HAF EX(ρ, τ ) [15]

where

EX(ρ, τ ) =

cosρ sinτ

sinρ sinτ
cosτ

. [16]

By Eqs. [14] and [15],

EB0 = PAF A EX(ρ, τ )

so that  x
y
z

 = A EX(ρ, τ ) [17]

gives the coordinates ofEB0 in PAF, and the associated resonan
is computed by substituting Eq. [17] in Eq. [2]. For fixedτ , the
result gives parametric equations, parameterized byρ, of curves
called PISA wheels. PISA wheels for variousτ are plotted in
Fig. 7. If the helix axisEa is tilted by an angle ofτ from EB0, then
the 15N PISEMA resonance for any residue lies on the PIS
wheel corresponding toτ . The PISA wheels for allτ fill out the
singlet powder pattern (see Fig. 7).
e
FIG. 7. The singlet powder pattern is the union of the PISA wheels for

all τ . Here the simulation is created using the parameter valuesσ11= 30 ppm,
σ22= 100 ppm,σ33= 200 ppm,ν‖ = 10.735 kHz,α= 0◦, andβ = 17◦.
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4.4. Patterns of Resonances on PISA Wheels

In Eq. [15], the angleτ is the tilt of the helix axis with respec
to EB0. The angleρ changes by 100◦ between subsequent peptid
planes; that is, if the planes are numberedk = 0, 1, 2, . . . with
the corresponding helix axis frame denotedHAF k and

EB0 = HAF k EX(ρk, τ ),

then

ρk = ρ0− k 100◦. [18]

For fixedτ andρ0, substituting x
y

z

 = A EX(ρ0− k 100◦, τ ) [19]

in Eq. [2] for k = 0, 1, 2, . . . gives a sequence of resonances
the PISA wheel corresponding to a tilt ofτ (see Fig. 8). This
pattern of resonances is related to the helical wheel of the i
helix (2, 21). Assigning any resonance to a value ofk allows
the other resonances to be assigned andρ0 to be determined
The valuesτ andρ0 determine the orientation of the helix wit
respect toEB0, since they determine the coordinates ofEB0 in
HAF0.

PISA wheels give a graphical approach for the interpreta
of the tilt τ , but the determination ofτ andρ0 can also be done
by least squares minimization. Supposeπo,k are the observed
frequencies, and

πc,k(ρ0, τ ) = π (A EX(ρ0− k 100◦, τ )) [20]
FIG. 8. A sequence of resonances on the PISA wheel forτ = 35◦ and
ρ0 = −10◦.
ET AL.
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are the calculated frequencies. The function

g(ρ0, τ ) =
∑

k

|πc,k(ρ0, τ )− πo,k|2, [21]

where the sum is over allk for which data is available, can b
minimized as a function ofρ0 andτ to find the values giving the
orientation of the straightα-helix most consistent with experi
mental observations. Note that a similar method works if o
15N chemical shift data is available (22, 23).

Using data for the M2 transmembrane peptide from influen
A and usingMapleto compute the first and second partial deriv
tives of g, the second derivative test from calculus shows t
the absolute minimum forg occurs atτ = 35◦ andρ0 = −10◦.
These values are in good agreement with those reporte
(2, 22, 23).

5. CONCLUSIONS

Solid-state NMR PISEMA experiments are powerful tools f
obtaining high-resolution orientational information about me
brane protein structures. Since membrane proteins have pr
difficult to study using X-ray techniques and solution NMR
PISEMA and other solid-state NMR experiments occupy
important place in the list of techniques for protein structu
determination. This paper adds to the methods for extrac
information from PISEMA experiments.

The PISEMA functionπ is a map from orientations on the
unit sphere to the frequency plane and gives a straightforw
way of computing the ridge plots of PISEMA powder spect
Equation [4] is an implicit equation of an ellipse that is the sing
powder pattern whenα = 0◦ or when |sinβ| is small. This
equation can be used to plot such powder patterns without u
Hamiltonians. For other values ofα andβ, powder patterns can
also be simulated without Hamiltonians by plotting the images
several great circles on the sphere under the PISEMA functioπ .

Based on the powder pattern analysis forα = 0◦, four dege-
neracies are involved in determining peptide plane orientati
associated with a particular PISEMA resonance. If these s
degeneracies can be determined or guessed, Eqs. [9], [11]
[12] demonstrate how to find orientations associated with a gi
PISEMA resonance.

From the PISEMA powder pattern whenα = 0◦ or |sinβ| is
small, the sign degeneracy,ε1, for the dipolar splitting can be
determined for some resonances, limiting the number of p
sible orientations associated with these resonances. Given
about adjacent residues, rough estimates of torsion angles
be computed as done by Songet al. (12). If data are available
for several adjacent residues, the algorithm presented by Q
and Cross (20) can be used to build all possible structures for t
residues. Thus, combining Eqs. [9], [11], and [12] with prev
ously published methods gives a significant tool for determin

possible structures associated with PISEMA data.

Finally, Eqs. [19] and [20] describe the patterns of resonances
on a PISA wheel for an ideal membraneα-helix and are useful
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in assigning resonances and in determining the tilt (τ ) and ro-
tation (ρ0) of a membrane helix. Analytic minimization of th
function in Eq. [21] gives an efficient method of determiningτ
andρ0 for a helix based on given data. Based on shapes an
termination of tilt and rotation parameters, Marassi and Op
have shown that PISA wheels give an index of secondary st
tures (1). Indeed, Marassi has exhibited that the typical patte
for β-sheets in membranes also provide tilt and rotation in
mation, and theseβ-sheet patterns have shapes that are q
different from the PISA wheel shapes fromα-helices (3). These
properties make PISA wheels in PISEMA spectra of orien
peptides powerful tools for qualitative assessment of secon
structures.

APPENDIX

This appendix describes the computation of the matrixA, used
in Sections 4.3 and 4.4, giving the rotation between the h
axis frameHAF and the15N principal axis framePAF. Both
frames are related to a molecular frameF at the peptide plane
nitrogen. The relationship ofPAF to F is given by the Euler
anglesα andβ. The relationship ofHAF to F is computed from
the geometry of the peptide plane and theφ andψ parameters
of theα-helix.

To define the nitrogen molecular frameF, let Ef1 be the unit
vector in the direction of the N–Cα bond andEw the unit vector
in the direction of the C–N bond. Take the nitrogen molecu
frame to be

F = (Ef1, Ef2, Ef3),

whereEf3 = Ew× Ef1/| Ew× Ef1|, andEf2 = Ef3× Ef1.
The15N chemical shift principal axis frame,PAF, is assumed

constant in relation toF. Assumeα = 0◦ andβ = 17◦, which are
the values corresponding to a typical15N chemical shift tensor
orientation for nonglycine amides (15–17). Further, letη be the
Cα–N–H angle, and assumeη = 117◦ based on (25). Then,

PAF

0 1 0
0 0 1
1 0 0

 = (Eσ33, Eσ11, Eσ22) = FR3(−(β + η)). [A.1]

The computation of the helix axis frame,HAF , depends on
the geometry of the peptide plane and theα-helix. Suppose the
exterior bond angle at Cα–C–N isα, at C–N–Cα is β, and at N–
Cα–C isγ . The nitrogen molecular frameF′ in the subsequen
peptide plane can be obtained fromF by a sequence of rotation
along the backbone by exterior bond anglesγ , α andβ, and
torsion anglesφ, ψ , andω,

F′ = FC,

where
C = R1(φ)R3(γ )R1(ψ)R3(α)R1(ω)R3(β)
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and

R1(θ ) =
1 0 0

0 cosθ −sinθ
0 sinθ cosθ

,
R3(θ ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

.
The rotationC can be written as a rotation,R(Ea, θ ), about unit

vectorEa by angleθ . Based on (24) assume

α = 65◦ β = 59◦ γ = 70◦.

For an idealα-helix withφ = −65◦,ψ = −40◦, andω = 180◦,

Ea≈

 0.61

0.76

−0.21

 [A.2]

andθ = 100◦. Thus,

F′ = R(FEa, 100◦)F. [A.3]

The Euclidean motion sending one peptide plane to the n
also depends on a translation by a virtual bond vector from
N-terminal to the C-terminalα-carbon in a peptide plane. Again
based on (24) assume a peptide plane geometry with Cα–C bond
length 1.53Å, C–N bond length 1.34̊A, and N–Cα bond length
1.45Å. Using these bond lengths and the bond anglesα, β, and
γ given above, the virtual bond vector from Cα to subsequent
Cα can be writtenFEv, where

Ev ≈

 3.66

−0.99

0.00

. [A.4]

To define the helix axis frame,HAF , for an idealα-helix, it
is necessary to compute the shortest vector from the initialα-
carbon of the peptide plane to the axis of the helix. Placing
N-terminalα-carbon of a peptide plane at the origin, Eqs. [A.3
and [A.4] show that the Euclidean transformation

Ex→ R(FEa, 100◦)Ex+ FEv [A.5]

sends one peptide plane to the subsequent plane. Repea
applying this transformation to the initialα-carbon will generate
theα-carbon backbone of the helix. The shortest vector from t
origin to the line fixed by the screw translationEx→ R(Eu, θ ) Ex +
Eb is given by Chasles’ formula (26)
1

2

(
cot

θ

2
Eu× Eb+ Eb− (Eu · Eb)Eu

)
.
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Applying this to Eq. [A.3] shows that the shortest vector fro
the N-terminalα-carbon in the peptide plane to the helix axis
FEp where

Ep= 1

2
(cot 50◦ Ea× Ev+ Ev− (Ea · Ev)Ea)≈

 1.29
−1.38
−1.27

.
Then ifEr = −Ep/|Ep|, the helix axis frame is defined to be

HAF = F(Er, Ea×Er, Ea)≈ F

−.57 .55 .61
.60 −.22 .76
.56 .80 −.21

. [A.6]

Thus, for an idealα-helix withφ = −65◦,ψ = −40◦,α = 0◦,
andβ = 17◦, Eqs. [A.6] and [A.1] give

A = PAFt HAF

=
0 1 0

0 0 1
1 0 0

R3(β + η)(Er, Ea×Er, Ea) [A.7]

≈
−0.83 0.55 −0.09

0.56 0.80 −0.21
−0.04 −0.22 −0.97

.
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